
scrapbook Documentation
Release 0.5.0

nteract team

Jan 06, 2021

Contents

1 Python Version Support 3

2 Use Case 5

3 Documentation 7

4 API Reference 15

5 Indices and tables 23

Python Module Index 25

Index 27

i

ii

scrapbook Documentation, Release 0.5.0

scrapbook is a library for recording a notebook’s data values and generated visual content as “scraps”. These recorded
scraps can be read at a future time.

This library replaces papermill’s existing record functionality.

Contents 1

https://travis-ci.org/nteract/scrapbook
https://codecov.io/github/nteract/scrapbook?branch=main
http://nteract-scrapbook.readthedocs.io/en/latest/?badge=latest
https://mybinder.org/v2/gh/nteract/scrapbook/main?filepath=binder%2Freglue_highlight_dates.ipynb
https://mybinder.org/v2/gh/nteract/scrapbook/main?filepath=binder%2FResultsDemo.ipynb
https://papermill.readthedocs.io

scrapbook Documentation, Release 0.5.0

2 Contents

CHAPTER 1

Python Version Support

This library will support python 2.7 and 3.5+ until end-of-life for python 2 in 2020. After which python 2 support will
halt and only 3.x version will be maintained.

3

scrapbook Documentation, Release 0.5.0

4 Chapter 1. Python Version Support

CHAPTER 2

Use Case

Notebook users may wish to record data produced during a notebook execution. This recorded data can then be read
to be used at a later time or be passed to another notebook as input.

Namely scrapbook lets you:

• persist data and displays (scraps) in a notebook

• recall any persisted scrap of data

• summarize collections of notebooks

5

scrapbook Documentation, Release 0.5.0

6 Chapter 2. Use Case

CHAPTER 3

Documentation

These pages guide you through the installation and usage of scrapbook.

3.1 Installation

3.1.1 Installing the application

From the command line:

pip install scrapbook

For all optional io dependencies, you can specify individual bundles like s3, or azure – or use all

pip install scrapbook[all]

3.2 Models

A few new names for information are introduced in scrapbook:

• scraps: serializable data values and visualizations such as strings, lists of objects, pandas dataframes, charts,
images, or data references.

• notebook: a wrapped nbformat notebook object with extra methods for interacting with scraps.

• scrapbook: a collection of notebooks with an interface for asking questions of the collection.

• encoders: a registered translator of data to/from notebook storage formats.

7

scrapbook Documentation, Release 0.5.0

3.2.1 Scrap

The scrap model houses a few key attributes in a tuple. Namely:

• name: The name of the scrap

• data: Any data captured by the scrapbook api call

• encoder: The name of the encoder used to encode/decode data to/from the notebook

• display: Any display data used by IPython to display visual content

3.2.2 Notebook

The Notebook object adheres to the nbformat’s json schema, allowing for access to its required fields.

nb = sb.read_notebook('notebook.ipynb')
nb.cells # The cells from the notebook
nb.metadata
nb.nbformat
nb.nbformat_minor

There’s a few additional methods provided, outlined in the API page (read_notebook API)

3.2.3 Scrapbook

A collection of Notebooks is called a Scrapbook. It allows for access the underlying notebooks and to perform data
collection from the group as a whole.

create a scrapbook named `book`
book = sb.read_notebooks('path/to/notebook/collection/')
get the underlying notebooks as a list
book.notebooks # Or `book.values`

There’s a additional methods provided, outlined in the API page (read_notebooks API)

3.2.4 Encoder

Encoders are accessible by key names to Encoder objects registered against the encoders.registry object. To
register new data encoders simply call:

from scrapbook.encoders import registry as encoder_registry
add encoder to the registry
encoder_registry.register("custom_encoder_name", MyCustomEncoder())

The encode class must implement two methods, encode and decode:

class MyCustomEncoder(object):
def encode(self, scrap):

scrap.data is any type, usually specific to the encoder name
pass # Return a `Scrap` with `data` type one of [None, list, dict, *six.

→˓integer_types, *six.string_types]

def decode(self, scrap):

(continues on next page)

8 Chapter 3. Documentation

https://github.com/jupyter/nbformat/blob/master/nbformat/v4/nbformat.v4.schema.json

scrapbook Documentation, Release 0.5.0

(continued from previous page)

scrap.data is one of [None, list, dict, *six.integer_types, *six.string_
→˓types]

pass # Return a `Scrap` with `data` type as any type, usually specific to
→˓the encoder name

This can read transform scraps into a json object representing their contents or location and load those strings back
into the original data objects.

For example, here is the code for a custom encoder that can save Altair charts by converting the chart to a dictionary
as a part of the encoding process.

from scrapbook.encoders import registry as encoder_registry
import altair as alt

class AltairEncoder(object):
def encode(self, scrap):

Here we assume the input to `sb.glue` is an Altair chart.
scrap = scrap._replace(data=scrap.data.to_dict())
return scrap

def decode(self, scrap):
scrap = scrap._replace(data=alt.Chart.from_dict(scrap.data))
return scrap

Register the encoder so that scrapbook can use it
encoder_registry.register("altair", AltairEncoder())
Now we can use this encoder with `glue`
sb.glue('my_altair_chart', chart, 'altair')

text

A basic string storage format that saves data as python strings.

sb.glue("hello", "world", "text")

json

sb.glue("foo_json", {"foo": "bar", "baz": 1}, "json")

arrow

Implementation Pending!

3.3 glue API

The glue call records a Scrap (data or display value) in the given notebook cell.

The scrap (recorded value) can be retrieved during later inspection of the output notebook.

3.3. glue API 9

https://altair-viz.github.io/user_guide/generated/toplevel/altair.Chart.html

scrapbook Documentation, Release 0.5.0

import scrapbook as sb

sb.glue("hello", "world")
sb.glue("number", 123)
sb.glue("some_list", [1, 3, 5])
sb.glue("some_dict", {"a": 1, "b": 2})
sb.glue("non_json", df, 'pandas')

The scrapbook library can be used later to recover scraps (recorded values) from the output notebook:

nb = sb.read_notebook('notebook.ipynb')
nb.scraps

scrapbook will imply the storage format by the value type of any registered data encoders. Alternatively, the implied
encoding format can be overwritten by setting the encoder argument to the registered name (e.g. "json") of a
particular encoder.

This data is persisted by generating a display output with a special media type identifying the content encoding format
and data. These outputs are not always visible in notebook rendering but still exist in the document. Scrapbook can
then rehydrate the data associated with the notebook in the future by reading these cell outputs.

3.3.1 Pandas

When glueing pandas dataframes, the library will use pyarrow to translate the dataframe to a base64 encoded parquet
file. Because of this tool chain, certain nested objects will not encode cleanly and will raise an Arrow exception.
Common nested objects that will fail include columns with dicts or sets within them, either directly or nested inside
other objects. Over time these nested types should be more supported (nested lists work for example) as Arrow adds
struct transformations.

3.3.2 Display Outputs

To display a named scrap with visible display outputs, you need to indicate that the scrap is directly renderable.

This can be done by toggling the display argument.

record a UI message along with the input string
sb.glue("hello", "Hello World", display=True)

The call will save the data and the display attributes of the Scrap object, making it visible as well as encoding the
original data. This leans on the IPython.core.formatters.format_display_data function to translate
the data object into a display and metadata dict for the notebook kernel to parse.

Another pattern that can be used is to specify that only the display data should be saved, and not the original object.
This is achieved by setting the encoder to be display.

record an image without the original input object
sb.glue("sharable_png",

IPython.display.Image(filename="sharable.png"),
encoder='display'

)

Finally the media types that are generated can be controlled by passing a list, tuple, or dict object as the display
argument.

10 Chapter 3. Documentation

scrapbook Documentation, Release 0.5.0

sb.glue("media_as_text_only",
media_obj,
encoder='display',
display=('text/plain',) # This passes [text/plain] to format_display_data's include

→˓argument
)

sb.glue("media_without_text",
media_obj,
encoder='display',
display={'exclude': 'text/plain'} # forward to format_display_data's kwargs

)

Like data scraps, these can be retrieved at a later time be accessing the scrap’s display attribute. Though usually
one will just use Notebook’s reglue method (reglue).

An example using display data

For example, the following code generates a Matplotlib plot and saves only the display data as a scrap. This allows
you to import the plot into another notebook.

Generate our plot
fig, ax = plt.subplots()
ax.plot(x, y)

We use *fig* as IPython knows how to display this.
sb.glue("sharable_plot", fig, "display")

This glues only the display information (e.g. the base64 encoded image generated by Matplotlib). In another notebook,
it can be accessed and displayed like so:

nb = sb.read_notebook(path_to_first_notebook)

To display the image and reglue it
nb.reglue('sharable_plot')

To access the display information directly
nb.scraps['sharable_plot'].display['data']['image/png']

3.4 read_notebook API

Reads a Notebook object loaded from the location specified at path. You’ve already seen how this function is used
in the above api call examples, but essentially this provides a thin wrapper over an nbformat’s NotebookNode with
the ability to extract scrapbook scraps.

nb = sb.read_notebook('notebook.ipynb')

This Notebook object adheres to the nbformat’s json schema, allowing for access to its required fields.

nb.cells # The cells from the notebook
nb.metadata
nb.nbformat
nb.nbformat_minor

3.4. read_notebook API 11

https://github.com/jupyter/nbformat/blob/master/nbformat/v4/nbformat.v4.schema.json

scrapbook Documentation, Release 0.5.0

There’s a few additional methods provided, most of which are outlined in more detail below:

nb.scraps
nb.reglue

The abstraction also makes saved content available as a dataframe referencing each key and source. More of these
methods will be made available in later versions.

Produces a data frame with ["name", "data", "encoder", "display", "filename"] as
→˓columns
nb.scrap_dataframe # Warning: This might be a large object if data or display is large

The Notebook object also has a few legacy functions for backwards compatibility with papermill’s Notebook object
model. As a result, it can be used to read papermill execution statistics as well as scrapbook abstractions:

nb.cell_timing # List of cell execution timings in cell order
nb.execution_counts # List of cell execution counts in cell order
nb.papermill_metrics # Dataframe of cell execution counts and times
nb.papermill_record_dataframe # Dataframe of notebook records (scraps with only data)
nb.parameter_dataframe # Dataframe of notebook parameters
nb.papermill_dataframe # Dataframe of notebook parameters and cell scraps

The notebook reader relies on papermill’s registered iorw to enable access to a variety of sources such as – but not
limited to – S3, Azure, and Google Cloud.

3.4.1 scraps

The scraps method allows for access to all of the scraps in a particular notebook by providing a name -> scrap
lookup.

nb = sb.read_notebook('notebook.ipynb')
nb.scraps # Prints a dict of all scraps by name

This object has a few additional methods as well for convenient conversion and execution.

nb.scraps.data_scraps # Filters to only scraps with `data` associated
nb.scraps.data_dict # Maps `data_scraps` to a `name` -> `data` dict
nb.scraps.display_scraps # Filters to only scraps with `display` associated
nb.scraps.display_dict # Maps `display_scraps` to a `name` -> `display` dict
nb.scraps.dataframe # Generates a dataframe with ["name", "data", "encoder", "display
→˓"] as columns

These methods allow for simple use-cases to not require digging through model abstractions.

3.4.2 reglue

Using reglue one can take any scrap glue’d into one notebook and glue into the current one.

nb = sb.read_notebook('notebook.ipynb')
nb.reglue("table_scrap") # This copies both data and displays

Any data or display information will be copied verbatim into the currently executing notebook as though the user
called glue again on the original source.

It’s also possible to rename the scrap in the process.

12 Chapter 3. Documentation

https://papermill.readthedocs.io/en/latest/reference/papermill-io.html

scrapbook Documentation, Release 0.5.0

nb.reglue("table_scrap", "old_table_scrap")

And finally if one wishes to try to reglue without checking for existence the raise_on_missing can be set to just
display a message on failure.

nb.reglue("maybe_missing", raise_on_missing=False)
=> "No scrap found with name 'maybe_missing' in this notebook"

3.5 read_notebooks API

Reads all notebooks located in a given path into a Scrapbook object.

create a scrapbook named `book`
book = sb.read_notebooks('path/to/notebook/collection/')
get the underlying notebooks as a list
book.notebooks # Or `book.values`

The path reuses papermill’s registered iorw. to list and read files form various sources, such that non-local urls can
load data.

create a scrapbook named `book`
book = sb.read_notebooks('s3://bucket/key/prefix/to/notebook/collection/')

The Scrapbook (book in this example) can be used to recall all scraps across the collection of notebooks:

book.notebook_scraps # Dict of shape `notebook` -> (`name` -> `scrap`)
book.scraps # merged dict of shape `name` -> `scrap`

3.5.1 scraps_report

The Scrapbook collection can be used to generate a scraps_report on all the scraps from the collection as a
markdown structured output.

book.scraps_report()

This display can filter on scrap and notebook names, as well as enable or disable an overall header for the display.

book.scraps_report(
scrap_names=["scrap1", "scrap2"],
notebook_names=["result1"], # matches `/notebook/collections/result1.ipynb` pathed

→˓notebooks
header=False

)

By default the report will only populate with visual elements. To also report on data elements set include_data.

book.scraps_report(include_data=True)

3.5.2 papermill support

Finally the scrapbook has two backwards compatible features for deprecated papermill capabilities:

3.5. read_notebooks API 13

https://papermill.readthedocs.io/en/latest/reference/papermill-io.html

scrapbook Documentation, Release 0.5.0

book.papermill_dataframe
book.papermill_metrics

3.6 papermill record

scrapbook provides a robust and flexible recording schema. This library is intended to replace papermill’s existing
record functionality.

Documentation for papermill record In brief:

pm.record(name, value): enabled users the ability to record values to be saved with the notebook [API docu-
mentation]

pm.record("hello", "world")
pm.record("number", 123)
pm.record("some_list", [1, 3, 5])
pm.record("some_dict", {"a": 1, "b": 2})

pm.read_notebook(notebook): pandas could be used later to recover recorded values by reading the output
notebook into a dataframe.

nb = pm.read_notebook('notebook.ipynb')
nb.dataframe

3.6.1 Limitations and challenges

• The record function didn’t follow papermill’s pattern of linear execution of a notebook codebase. (It was
awkward to describe record as an additional feature of papermill this week. It really felt like describing a
second less developed library.)

• Recording / Reading required data translation to JSON for everything. This is a tedious, painful process for
dataframes.

• Reading recorded values into a dataframe would result in unintuitive dataframe shapes.

• Less modularity and flexiblity than other papermill components where custom operators can be registered.

14 Chapter 3. Documentation

https://papermill.readthedocs.io
https://papermill.readthedocs.io/en/latest/usage-recording.html?#recording-values-to-the-notebook
https://papermill.readthedocs.io/en/latest/reference/papermill.html#papermill.api.record
https://papermill.readthedocs.io/en/latest/reference/papermill.html#papermill.api.record

CHAPTER 4

API Reference

If you are looking for information about a specific function, class, or method, this documentation section will help
you.

4.1 scrapbook

4.1.1 scrapbook package

Subpackages

scrapbook.tests package

Submodules

scrapbook.tests.test_api module

scrapbook.tests.test_encoders module

scrapbook.tests.test_notebooks module

scrapbook.tests.test_scrapbooks module

scrapbook.tests.test_scraps module

scrapbook.tests.test_utils module

scrapbook.tests.test_utils.test_is_kernel_true()

scrapbook.tests.test_utils.test_not_kernel_in_ipython()

15

scrapbook Documentation, Release 0.5.0

Module contents

scrapbook.tests.get_fixture_path(*args)

scrapbook.tests.get_notebook_dir(*args)

scrapbook.tests.get_notebook_path(*args)

Submodules

scrapbook.api module

api.py

Provides the base API calls for scrapbook

scrapbook.api.glue(name, data, encoder=None, display=None)
Records a data value in the given notebook cell.

The recorded data value can be retrieved during later inspection of the output notebook.

The data type of the scraps is implied by the value type of any of the registered data encoders, but can be
overwritten by setting the encoder argument to a particular encoder’s registered name (e.g. “json”).

This data is persisted by generating a display output with a special media type identifying the content storage
encoder and data. These outputs are not visible in notebook rendering but still exist in the document. Scrapbook
then can rehydrate the data associated with the notebook in the future by reading these cell outputs.

Example

sb.glue(“hello”, “world”) sb.glue(“number”, 123) sb.glue(“some_list”, [1, 3, 5]) sb.glue(“some_dict”, {“a”: 1,
“b”: 2}) sb.glue(“non_json”, df, ‘arrow’)

The scrapbook library can be used later to recover scraps (recorded values) from the output notebook

nb = sb.read_notebook(‘notebook.ipynb’) nb.scraps

Parameters

• name (str) – Name of the value to record.

• data (any) – The value to record. This must be an object for which an encoder’s encodable
method returns True.

• encoder (str (optional)) – The name of the handler to use in persisting data in the
notebook.

• display (any (optional)) – An indicator for persisting controlling displays for the
named record.

scrapbook.api.read_notebook(path)
Returns a Notebook object loaded from the location specified at path.

Parameters path (str) – Path to a notebook .ipynb file.

Returns notebook – A Notebook object.

Return type object

scrapbook.api.read_notebooks(path)
Returns a Scrapbook including the notebooks read from the directory specified by path.

16 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

scrapbook Documentation, Release 0.5.0

Parameters path (str) – Path to directory containing notebook .ipynb files.

Returns scrapbook – A Scrapbook object.

Return type object

scrapbook.encoders module

encoders.py

Provides the encoders for various data types to be persistable

class scrapbook.encoders.DataEncoderRegistry
Bases: collections.abc.MutableMapping

decode(scrap, **kwargs)
Finds the register for the given encoder and translates the scrap’s data from a string or JSON type to an
object of the encoder output type.

Parameters scrap (Scrap) – A partially filled in scrap with data that needs decoding

deregister(encoder)
Removes a particular encoder from the registry

Parameters name (str) – Name of the mime subtype parsed by the encoder.

determine_encoder_name(data)
Determines the

encode(scrap, **kwargs)
Finds the register for the given encoder and translates the scrap’s data from an object of the encoder type
to a JSON typed object.

Parameters scrap (Scrap) – A partially filled in scrap with data that needs encoding

register(encoder)
Registers a new name to a particular encoder

Parameters

• name (str) – Name of the mime subtype parsed by the encoder.

• encoder (obj) – The object which implements the required encoding functions.

reset()
Resets the registry to have no encoders.

class scrapbook.encoders.DisplayEncoder
Bases: object

ENCODER_NAME = 'display'

decode(scrap, **kwargs)

encodable(data)

encode(scrap, **kwargs)

name()

class scrapbook.encoders.JsonEncoder
Bases: object

ENCODER_NAME = 'json'

decode(scrap, **kwargs)

4.1. scrapbook 17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

scrapbook Documentation, Release 0.5.0

encodable(data)

encode(scrap, **kwargs)

name()

class scrapbook.encoders.PandasArrowDataframeEncoder
Bases: object

ENCODER_NAME = 'pandas'

decode(scrap, **kwargs)

encodable(data)

encode(scrap, **kwargs)

name()

class scrapbook.encoders.TextEncoder
Bases: object

ENCODER_NAME = 'text'

decode(scrap, **kwargs)

encodable(data)

encode(scrap, **kwargs)

name()

scrapbook.exceptions module

exception scrapbook.exceptions.ScrapbookDataException(message, data_errors=None)
Bases: scrapbook.exceptions.ScrapbookException

Raised when a data translation exception is encountered

exception scrapbook.exceptions.ScrapbookException
Bases: ValueError

Raised when an exception is encountered when operating on a notebook.

exception scrapbook.exceptions.ScrapbookInvalidEncoder
Bases: scrapbook.exceptions.ScrapbookException

Raised when no encoder is found to tranforming data

exception scrapbook.exceptions.ScrapbookMissingEncoder
Bases: scrapbook.exceptions.ScrapbookException

Raised when no encoder is found to tranforming data

scrapbook.log module

scrapbook.models module

models.py

Provides the various model wrapper objects for scrapbook

18 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ValueError

scrapbook Documentation, Release 0.5.0

class scrapbook.models.Notebook(node_or_path)
Bases: object

Representation of a notebook. This model is quasi-compatible with the nbformat NotebookNode object in that
it support access to the v4 required fields from nbformat’s json schema. For complete access to normal nbformat
operations, use the node attribute of this model.

Parameters node_or_path (nbformat.NotebookNode, str) – a notebook object, or a path to a
notebook object

cell_timing
a list of cell execution timings in cell order

Type list

cells

copy()

directory
directory name found for a notebook (nb)

Type str

execution_counts
a list of cell execution counts in cell order

Type list

filename
filename found a the specified path

Type str

metadata

metrics
dataframe of cell execution counts and times

Type pandas dataframe

nbformat

nbformat_minor

papermill_dataframe
dataframe of notebook parameters and cell scraps

Type pandas dataframe

papermill_metrics

papermill_record_dataframe
dataframe of cell scraps

Type pandas dataframe

parameter_dataframe
dataframe of notebook parameters

Type pandas dataframe

parameters
parameters stored in the notebook metadata

Type dict

4.1. scrapbook 19

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

scrapbook Documentation, Release 0.5.0

reglue(name, new_name=None, raise_on_missing=True, unattached=False)
Display output from a named source of the notebook.

Parameters

• name (str) – name of scrap object

• new_name (str) – replacement name for scrap

• raise_error (bool) – indicator for if the resketch should print a message or error on
missing snaps

• unattached (bool) – indicator for rendering without making the display recallable as
scrapbook data

scrap_dataframe
dataframe of cell scraps

Type pandas dataframe

scraps
a dictionary of data found in the notebook

Type dict

class scrapbook.models.Scrapbook
Bases: collections.abc.MutableMapping

A collection of notebooks represented as a dictionary of notebooks

metrics
a list of metrics from a collection of notebooks

Type list

notebook_scraps
a dictionary of the notebook scraps by key.

Type dict

notebooks
a sorted list of associated notebooks.

Type list

papermill_dataframe
a list of data names from a collection of notebooks

Type list

papermill_metrics

scraps
a dictionary of the merged notebook scraps.

Type dict

scraps_report(scrap_names=None, notebook_names=None, include_data=False, headers=True)
Display scraps as markdown structed outputs.

Parameters

• scrap_names (str or iterable[str] (optional)) – the scraps to display
as reported outputs

• notebook_names (str or iterable[str] (optional)) – notebook names
to use in filtering on scraps to report

20 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

scrapbook Documentation, Release 0.5.0

• include_data (bool (default: False)) – indicator that data-only scraps
should be reported

• header (bool (default: True)) – indicator for if the scraps should render with
a header

scrapbook.models.merge_dicts(dicts)

scrapbook.schemas module

schemas.py

Provides the json schema for various versions of scrapbook payloads

scrapbook.schemas.scrap_schema(version=1)

scrapbook.scraps module

scraps.py

Provides the Scrap and Scraps abstractions for housing data

class scrapbook.scraps.Scrap(name, data, encoder, display)
Bases: tuple

data
Alias for field number 1

display
Alias for field number 3

encoder
Alias for field number 2

name
Alias for field number 0

class scrapbook.scraps.Scraps(*args, **kwargs)
Bases: collections.OrderedDict

data_dict

data_scraps

dataframe
dataframe of cell scraps

Type pandas dataframe

display_dict

display_scraps

scrapbook.scraps.payload_to_scrap(payload)
Translates data output format to a scrap

scrapbook.scraps.scrap_to_payload(scrap)
Translates scrap data to the output format

4.1. scrapbook 21

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/collections.html#collections.OrderedDict

scrapbook Documentation, Release 0.5.0

scrapbook.utils module

utils.py

Provides the utilities for scrapbook functions and operations.

scrapbook.utils.deprecated(version, replacement=None)
Warns the user that something is deprecated. Removal planned in version release.

scrapbook.utils.is_kernel()
Returns True if execution context is inside a kernel

scrapbook.utils.kernel_required(f)

scrapbook.version module

Module contents

22 Chapter 4. API Reference

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

23

scrapbook Documentation, Release 0.5.0

24 Chapter 5. Indices and tables

Python Module Index

s
scrapbook, 22
scrapbook.api, 16
scrapbook.encoders, 17
scrapbook.exceptions, 18
scrapbook.log, 18
scrapbook.models, 18
scrapbook.schemas, 21
scrapbook.scraps, 21
scrapbook.tests, 16
scrapbook.tests.test_utils, 15
scrapbook.utils, 22
scrapbook.version, 22

25

scrapbook Documentation, Release 0.5.0

26 Python Module Index

Index

C
cell_timing (scrapbook.models.Notebook attribute),

19
cells (scrapbook.models.Notebook attribute), 19
copy() (scrapbook.models.Notebook method), 19

D
data (scrapbook.scraps.Scrap attribute), 21
data_dict (scrapbook.scraps.Scraps attribute), 21
data_scraps (scrapbook.scraps.Scraps attribute), 21
DataEncoderRegistry (class in scrap-

book.encoders), 17
dataframe (scrapbook.scraps.Scraps attribute), 21
decode() (scrapbook.encoders.DataEncoderRegistry

method), 17
decode() (scrapbook.encoders.DisplayEncoder

method), 17
decode() (scrapbook.encoders.JsonEncoder method),

17
decode() (scrapbook.encoders.PandasArrowDataframeEncoder

method), 18
decode() (scrapbook.encoders.TextEncoder method),

18
deprecated() (in module scrapbook.utils), 22
deregister() (scrap-

book.encoders.DataEncoderRegistry method),
17

determine_encoder_name() (scrap-
book.encoders.DataEncoderRegistry method),
17

directory (scrapbook.models.Notebook attribute), 19
display (scrapbook.scraps.Scrap attribute), 21
display_dict (scrapbook.scraps.Scraps attribute),

21
display_scraps (scrapbook.scraps.Scraps at-

tribute), 21
DisplayEncoder (class in scrapbook.encoders), 17

E
encodable() (scrapbook.encoders.DisplayEncoder

method), 17
encodable() (scrapbook.encoders.JsonEncoder

method), 17
encodable() (scrap-

book.encoders.PandasArrowDataframeEncoder
method), 18

encodable() (scrapbook.encoders.TextEncoder
method), 18

encode() (scrapbook.encoders.DataEncoderRegistry
method), 17

encode() (scrapbook.encoders.DisplayEncoder
method), 17

encode() (scrapbook.encoders.JsonEncoder method),
18

encode() (scrapbook.encoders.PandasArrowDataframeEncoder
method), 18

encode() (scrapbook.encoders.TextEncoder method),
18

encoder (scrapbook.scraps.Scrap attribute), 21
ENCODER_NAME (scrapbook.encoders.DisplayEncoder

attribute), 17
ENCODER_NAME (scrapbook.encoders.JsonEncoder at-

tribute), 17
ENCODER_NAME (scrap-

book.encoders.PandasArrowDataframeEncoder
attribute), 18

ENCODER_NAME (scrapbook.encoders.TextEncoder at-
tribute), 18

execution_counts (scrapbook.models.Notebook at-
tribute), 19

F
filename (scrapbook.models.Notebook attribute), 19

G
get_fixture_path() (in module scrapbook.tests),

16

27

scrapbook Documentation, Release 0.5.0

get_notebook_dir() (in module scrapbook.tests),
16

get_notebook_path() (in module scrapbook.tests),
16

glue() (in module scrapbook.api), 16

I
is_kernel() (in module scrapbook.utils), 22

J
JsonEncoder (class in scrapbook.encoders), 17

K
kernel_required() (in module scrapbook.utils), 22

M
merge_dicts() (in module scrapbook.models), 21
metadata (scrapbook.models.Notebook attribute), 19
metrics (scrapbook.models.Notebook attribute), 19
metrics (scrapbook.models.Scrapbook attribute), 20

N
name (scrapbook.scraps.Scrap attribute), 21
name() (scrapbook.encoders.DisplayEncoder method),

17
name() (scrapbook.encoders.JsonEncoder method), 18
name() (scrapbook.encoders.PandasArrowDataframeEncoder

method), 18
name() (scrapbook.encoders.TextEncoder method), 18
nbformat (scrapbook.models.Notebook attribute), 19
nbformat_minor (scrapbook.models.Notebook

attribute), 19
Notebook (class in scrapbook.models), 18
notebook_scraps (scrapbook.models.Scrapbook at-

tribute), 20
notebooks (scrapbook.models.Scrapbook attribute),

20

P
PandasArrowDataframeEncoder (class in scrap-

book.encoders), 18
papermill_dataframe (scrap-

book.models.Notebook attribute), 19
papermill_dataframe (scrap-

book.models.Scrapbook attribute), 20
papermill_metrics (scrapbook.models.Notebook

attribute), 19
papermill_metrics (scrapbook.models.Scrapbook

attribute), 20
papermill_record_dataframe (scrap-

book.models.Notebook attribute), 19
parameter_dataframe (scrap-

book.models.Notebook attribute), 19

parameters (scrapbook.models.Notebook attribute),
19

payload_to_scrap() (in module scrap-
book.scraps), 21

R
read_notebook() (in module scrapbook.api), 16
read_notebooks() (in module scrapbook.api), 16
register() (scrapbook.encoders.DataEncoderRegistry

method), 17
reglue() (scrapbook.models.Notebook method), 19
reset() (scrapbook.encoders.DataEncoderRegistry

method), 17

S
Scrap (class in scrapbook.scraps), 21
scrap_dataframe (scrapbook.models.Notebook at-

tribute), 20
scrap_schema() (in module scrapbook.schemas), 21
scrap_to_payload() (in module scrap-

book.scraps), 21
Scrapbook (class in scrapbook.models), 20
scrapbook (module), 22
scrapbook.api (module), 16
scrapbook.encoders (module), 17
scrapbook.exceptions (module), 18
scrapbook.log (module), 18
scrapbook.models (module), 18
scrapbook.schemas (module), 21
scrapbook.scraps (module), 21
scrapbook.tests (module), 16
scrapbook.tests.test_utils (module), 15
scrapbook.utils (module), 22
scrapbook.version (module), 22
ScrapbookDataException, 18
ScrapbookException, 18
ScrapbookInvalidEncoder, 18
ScrapbookMissingEncoder, 18
Scraps (class in scrapbook.scraps), 21
scraps (scrapbook.models.Notebook attribute), 20
scraps (scrapbook.models.Scrapbook attribute), 20
scraps_report() (scrapbook.models.Scrapbook

method), 20

T
test_is_kernel_true() (in module scrap-

book.tests.test_utils), 15
test_not_kernel_in_ipython() (in module

scrapbook.tests.test_utils), 15
TextEncoder (class in scrapbook.encoders), 18

28 Index

	Python Version Support
	Use Case
	Documentation
	API Reference
	Indices and tables
	Python Module Index
	Index

